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Abstract
Kin discrimination describes the differential interaction of organisms with kin versus non-kin. In microorganisms, many
genetic loci act as effective kin-discrimination systems, such as kin-directed help and non-kin-directed harm. Another
important example is facultative cooperation, where cooperators increase their investment in group-directed cooperation with
the abundance of their kin in the group. Many of these kin-discrimination loci are highly diversified, yet it remains unclear
what evolutionary mechanisms maintain this diversity, and how it is affected by population structure. Here, we demonstrate
the unique dependence of kin-discriminative interactions on population structure, and how this could explain facultative-
cooperation allele-diversity. We show mathematically that low relatedness between microbes in non-clonal social groups is
needed to maintain the diversity of facultative-cooperation alleles, while high clonality is needed to stabilize this diversity
against cheating. Interestingly, we demonstrate with simulations that such population structure occurs naturally in expanding
microbial colonies. Finally, analysis of experimental data of quorum-sensing mediated facultative cooperation, in Bacillus
subtilis, demonstrates the relevance of our results to realistic microbial interactions, due to their intrinsic non-linear
frequency dependence. Our analysis therefore stresses the impact of clonality on the interplay between exploitation and kin
discrimination and portrays a way for the evolution of facultative cooperation.

Introduction

Microorganisms engage in numerous social behaviors that
affect their neighbors, ranging from helping to harming
behaviors. The ability to interact differentially with genetic
relatives versus non-relatives, called kin discrimination, is
therefore important. In microorganisms, kin-discrimination
systems are abundant and often display high allelic diversity

[1]. Examples include non-kin harming systems (e.g.,
bacteriocin-immunity pairs [2, 3], type VI secretion [4], or
contact-dependent inhibition [5]), and kin-directed helping
systems (e.g., siderophore-receptor pairs [6, 7], and contact-
dependent cooperative behaviors [8–11]).

A third, ubiquitous, example is facultative cooperation
(also designated facultative cheating [12–17] or strategic
cooperation [18]). In this situation, organisms increase their
level of cooperation with the abundance of their kin in
their interaction neighborhood, without specifically direct-
ing cooperation to their kin. This occurs in amoeba and
bacteria, which were shown to reduce their cooperative
efforts during fruiting body formation in mixed-genotype
groups compared to clonal groups [12, 18]. In addition, the
density-dependent control of many bacterial cooperative
behaviors by cell-cell signaling, also known as quorum
sensing (QS), often leads to facultative cooperation. This
is because the cooperative effort of a strain positively
depends on the concentration of QS signaling molecules
produced by kin with a similar QS allele [19, 20]. We
recently showed that mutual facultative cooperation occurs
between strains coding for divergent QS receptor-signal
alleles (also known as pherotypes). In these pherotypes,
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each QS receptor responds specifically to its co-encoded
signal, leading to a situation where the minority pherotype
senses less of its signal and thus cooperates less than
the majority pherotype while the benefit is shared by both
[16, 17, 21]. Facultative-cooperation divergent alleles
therefore follow a negative frequency-dependent selection
(i.e., minority wins), in contrast to other, directed, kin-
discrimination alleles that show a positive frequency-
dependent selection (i.e., majority wins) [1].

It is generally unknown what mechanisms maintain allele
diversity in microbial kin-discrimination systems [1]. For
facultative-cooperation alleles, negative frequency depen-
dence ensures coexistence of divergent alleles in unstruc-
tured populations, but in such conditions, facultative
cooperators face invasion by cheating alleles that will
eliminate diversity [16, 21]. Furthermore, microbial popu-
lations in the wild are often structured such that individuals
do not interact randomly with other individuals, but mostly
interact with their kin in locally-clonal groups. This happens
either because of extreme bottlenecks occurring when
entering an unoccupied niche [22–24], or because of the
aggregatory mode of growth of microbes with limited
motility in colonies or biofilms [25–28]. A simple metric for
population structure, originally defined by Hamilton [29], is
the genetic relatedness between interacting organisms,
which captures the probability of an organism to interact
with organisms of the same genetic makeup in a relevant
locus.

In this work, we wish to understand the role of popula-
tion structure in selection on divergent kin-discrimination
alleles in general, and specifically on divergent facultative-
cooperation variants. The effect of population structure on
the maintenance of cooperation in the face of cheating is
theoretically rather clear [22, 29–32]; cheaters outcompete
cooperators within mixed groups, whereas competition
between groups, and prominently between clonal groups,
works in the favor of cooperators. The interplay between
these two forces is governed by population structure, as was
famously summarized in Hamilton’s rule [29]; rb > c, where
b,c are measures of the benefit and cost of a cooperative
interaction and r is the relatedness measure [33]. In contrast
to cooperation, the effect of population structure on inter-
actions between kin-discrimination variants, which we term
here kin-discriminative interactions, is less clear. In such
interactions, clonal groups of organisms carrying different
kin-discrimination alleles are expected to behave similarly
and have the same fitness, resulting in an inter-group
competition effect that is more complex [34].

Here, we address this problem, focusing on the impact of
the strong clonality of microbial populations on kin-
discriminative interactions and specifically on facultative
cooperation. To this aim, we combine three approaches.

First, we formalize a Hamilton-like rule that separately
analyzes the clonal and non-clonal social neighborhoods
in a structured population. Consequently, we show that
facultative-cooperation allele diversity can be maintained
concomitantly with elimination of cheaters in a population
structure with high level of clonality and low relatedness in
non-clonal groups. Second, using simulations, we show
how this theoretical understanding applies to two realistic,
highly clonal, microbial population structures derived from
expansion through extreme bottlenecks and colony growth.
Finally, we analyze experimental data of competitions
between QS variants in Bacillus subtilis to show the rele-
vance of our predictions to realistic microbial interactions
due to their intrinsic non-linearity.

Results

A Hamilton-like invasion rule for kin-discriminative
interactions suggests conditions for the
maintenance of facultative-cooperation allele
diversity

To consider the role played by population structure in the
evolution of kin-discrimination allelic diversity, we first
utilized the general analytical approach of the Price equa-
tion [35] to rewrite Hamilton’s rule in a form that decouples
clonal from non-clonal effects on fitness, W (see Methods
and SI text for restrictions and derivations). Specifically, we
find that the condition for invasion of a rare genotype
(denoted by index 1) into a resident population of a com-
mon genotype (denoted by index 2) can be written as a
weighted sum of two terms:

x1c � Wh i1c� Wh i2c
� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ΔWclonal

þ 1� x1cð Þ � ρbnc � cncð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ΔWnon�clonal

> 0: ð1Þ

These two terms represent selection on the clonal and
non-clonal subpopulations of the rare genotype compared to
the baseline fitness of clonal groups of the common geno-
type (Fig. 1a). The weighting factor, x1c, which we denote
as clonality level, is the fraction of genotype #1 individuals
that are in clonal social neighborhoods (Fig. 1a). The first
term is the difference between the mean fitness of the two
genotypes in their clonal groups (〈W〉1c and 〈W〉2c). The
second term is written in a Hamilton rule-like form, where
the measures ρ, bnc, cnc are defined as r,b,c in Hamilton’s
rule, respectively, but taking into account only genotype #1
individuals that reside in non-clonal groups (Fig. 1a and SI
text). We therefore term ρ as “non-clonal relatedness”.
Importantly, its value can be very different than that of the
general relatedness, r (see Box 1 and SI text).
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The partition of the invasion condition in Eq. 1 is par-
ticularly useful for contrasting the effect of clonality on
exploitive interactions (i.e., between cooperators and chea-
ters) (Fig. 1b), versus its effect on kin-discriminative
interactions, e.g., between facultative-cooperation variants
(Fig. 1c). High level of clonality strongly favors cooperation
over cheating since clonal groups of cooperators have a
higher fitness than clonal groups of cheaters and since the
effect of the intra-group advantage of cheaters is minor in
this case (Fig. 1b). In contrast, clonal groups of different
kin-discrimination variants have the same fitness (Fig. 1c):
ΔWclonal= 0, and Eq. 1 is reduced to a Hamilton rule for
genotype #1 individuals in non-clonal groups:

ρbnc � cnc > 0: ð2Þ
Kin-discriminative interactions therefore do not depend

on the clonality level, but depend only on the social effects
occurring on the non-clonal sub-population of the rare
genotype (Fig. 1c and Box 1).

How would this understanding apply to interactions
between different facultative-cooperation variants and the
corresponding cheater variants? As explained above, chea-
ters would be eliminated if clonality is sufficiently high.
Since different facultative-cooperation variants display
negative frequency-dependent selection, the frequency of a
minority allele (in the total population) will increase if it is
also a minority in mixed-genotype social groups, i.e., if
non-clonal relatedness is low (Fig. 1c, see Box 1 and SI
text). To summarize, a population structure with high
clonality and low non-clonal relatedness will promote the
coexistence of facultative-cooperation alleles, while avoid-
ing invasion of cheaters.

Facultative-cooperation divergent alleles coexist
and resist cheating in realistic microbial structured
populations

In the above section, we theoretically showed that main-
tenance of facultative-cooperation alleles and their resis-
tance to invasion by cheaters could be accomplished in a
structured population with low non-clonal relatedness and
high level of clonality. As with other applications of
Hamilton’s rule, applying this insight to realistic scenarios
requires an understanding of the way by which growth,
competition and population structure are coupled with fit-
ness [33]. We therefore explored the behavior of microbial
facultative-cooperation strategies in two common models of
population structure, which emulate the two processes by
which microbes obtain high clonality – strong bottlenecks
and expansion during colonial growth. In both cases, we
assumed that social interactions weakly affect microbial
growth (i.e., fecundity), but that population dynamics and

Coop > Cheater Coop < Cheater
Dominant effect Minor effect

B

Growth

Common = Rare
No effect

Common < Rare
Dominant effect

C

Cooperator
Cheater

Common F.C.
Rare F.C.

Faculta�ve-coopera�on diversity unaffected by clonality 
and favored by low non-clonal relatedness

High clonality favors cooperators over cheaters

Growth

A

Clonality =                                                                   = 
Total # of rare individuals

# of rare individuals in clonal groups

Rare (#1)
Common (#2)

…

Fig. 1 Highly clonal structured population selects for facultative-
cooperation allele diversity and against cheaters. a A schematic
description of a structured population composed of purely clonal
socially interacting groups and mixed-genotype groups. The fate of a
rare genotype would be dictated by how well it does in clonal and
non-clonal groups compared to clonal groups of the common gen-
otype (Eq. 1). Clonality level, x1c, is defined as the fraction of
the rare genotype individuals that reside in strictly clonal groups.
b, c Pie chart representation of the fate of different social interac-
tions in structured populations with high clonality. Top and bottom
pie charts represent start and final populations, with the pie size
representing total population size and color slices representing fre-
quencies. b In exploitive interactions, a clonal cheater group (red)
has lower fitness (growth factor) than a clonal cooperator group
(blue), while cheaters have higher fitness than cooperators in mixed
groups. If clonality is high, selection will be dominated by clonal
social groups. c Two kin-discrimination alleles, e.g., facultative-
cooperation (F.C.) variants, have equal fitness in clonal groups, but
different fitness in mixed groups. Direction of selection will be
affected only by the non-clonal groups, irrespective of clonality
level. Facultative-cooperation alleles display negative-frequency
dependent selection in well-mixed conditions. Therefore, if the rare
variant is in minority in its social interaction groups (i.e., if non-
clonal relatedness is low), then it will increase in frequency in the
total (structured) population

Clonality and non-linearity drive facultative-cooperation allele diversity



Box 1 Hamilton’s rule for kin-discriminative interactions – a mathematical expansion

Eq. 2 has a similar structure as that of Hamilton’s rule, but it takes into account only the non-clonal sub-population of the invading genotype.
This brings forward the question of what will be the relation between population structure and frequency-dependent fitness in this form
compared to the general Hamilton rule.

Relatedness measures: In the limit where genotype #1 is rare, the general relatedness coefficient r is given by the mean probability for a
genotype #1 individual to find genotype #1 individuals (including itself) in its social environment (see ref. [47] and SI text). For example, in
Fig. 1a it is r ¼ 1

15 � ð12 � 1þ 2 � 26 þ 1 � 16Þ ¼ 0:86. Non-clonal relatedness, ρ, is similarly defined but only for invading individuals in non-
clonal groups. Thus in Fig. 1a it is ρ ¼ 1

3 � ð2 � 26 þ 1 � 16Þ ¼ 0:28< r. The relation between general relatedness, non-clonal relatedness and
clonality (which in Fig. 1a is x1c ¼ 12

15) is given by (see SI text):

r ¼ x1c þ 1� x1cð Þρ: ð3Þ

Therefore, a high level of general relatedness r can occur if the level of clonality x1c is high, even if non-clonal relatedness ρ is low.

Effects of non-linearity on selection: In addition to its dependence on the non-clonal relatedness ρ, Hamilton’s rule for kin-discriminative
interactions is affected by the frequency dependence of the invader’s fitness function, W1, which, in microorganisms, could be highly non-
linear [47]. In the SI text, we show that under the simplifying assumptions that the invader fitness is continuous and depends only on its
frequency, two qualitatively different selection patterns can arise. If the global minimum (maximum) of the invader fitness occurs at clonal
groups then invasion will always succeed as in Box Fig. A (always fail as in Box Fig. C), independently of population structure. Specifically,
this means that if an interaction between kin-discrimination genotypes is linear, then its fate would not depend on population structure. In
contrast, if a global extremum of the fitness occurs at an intermediate frequency, then population structure, and specifically non-clonal
relatedness ρ, could affect the direction of selection (Box Fig. B, D). For the case of negative frequency-dependent selection between
facultative-cooperation variants, we show in the SI text that under realistic assumptions the fitness of each variant will have a minimum at an
intermediate frequency. This implies that invasion of each allele will occur if the non-clonal relatedness ρ is low enough (Box Fig. B, SI text).
For the case of positive-frequency dependent selection, invasion will succeed when non-clonal relatedness is high (Box Fig. D). The above
statements are easily understood by considering the invasion condition as a comparison between the invader's mean fitness (over all social
neighborhoods) and the resident's clonal fitness (SI text).

The shape of the frequency-dependent selection function determines the impact of population structure. Examples for fitness functions
for kin-discriminative interactions between an invader (green) and a resident (blue), made symmetrical for simplicity. Dashed lines demonstrate
equal clonal fitness. Shown are cases for negative (a, b) and positive (c, d) frequency-dependent selection. (a, c) If the clonal invader fitness is
the global minimum (a) (maximum (c)) of the invader’s fitness function, then invasion will always succeed (a) (fail (c)), irrespective of the
population structure. (b, d) If fitness of clonal groups is not a global extremum, then population structure would affect invasion, and invasion
would succeed at low (b) (high (d)) non-clonal relatedness ρ. We note that success of invasion of a rare genotype does not depend on the
residents full fitness function, but only on its clonal fitness.
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fitness may also be affected by other components of the life
cycle, such as local competition, migration or drift.

To this aim, we consider the impact of the models on the
exploitive interaction between a facultative cooperator and a
cheater (Fig. 2a) and on the kin-discriminative interaction
between strains carrying two variants of the facultative-
cooperation allele (Fig. 2b). We assume that within an
interacting group, facultative cooperators secrete a public
good, in a manner proportional to their frequency in the
population, and suffer a proportional fitness cost (C). The
associated benefit (B) is proportional to the overall quantity
of public goods produced. A cheater strain enjoys the public
goods produced by cooperators without investing in their
production.

Infinite island model with both clonal and non-clonal
bottlenecks

We first consider the strong bottleneck scenario using an
infinite island model with migration (e.g., [34, 36–38], see a
more detailed description of the model in the SI text).
Briefly, we study the change in frequency of two different
strains; a common (resident) strain and a rare (invader)
strain. Microbes of the two genotypes can inoculate an
infinite number of growth patches of similar ecological
context. To understand the impact of strict clonality on the
process, we assume that a fraction ϵ of the microbes
inoculates patches that allow inoculation by N founders and
may therefore result in mixed-genotype patches, while the
rest (1−ϵ) experience a stronger bottleneck and singly
inoculate a smaller patch (of N= 1), which will therefore be
strictly clonal. Each microbe in a patch first grows by a
constant factor in an asocial manner until density is suffi-
ciently high to introduce social effects on growth. Growth
(fecundity) of each microbe, under social conditions, is
dependent on its genotype and on the frequency of the two
genotypes in the patch (Fig. 2a, b). To simulate possible
mixing of patches we assume that after social growth,
microbes can migrate to a new patch at a probability m, or
remain in their patch, at a probability 1−m. Finally, a new
cycle of growth arises by random sampling of each patch
population back to its original inoculum size (either 1 or N).
Figure 2c describes this model for the case of full migration
(m= 1).

Based on our theoretical predictions, we expect selection
for the cheater to depend on the general relatedness which
will depend on the three parameters ϵ,N and m. In contrast,
the direction of selection for a kin-discriminative strategy
should depend only on the interaction in non-clonal patches
and therefore should depend on N and m, but not on ϵ. A
full analysis of this model (SI text) agrees well with these
expectations. This is specifically simple for the case of full
migration, where we find a simple formula for the general

and non-clonal relatedness coefficients: r ¼ 1� ϵþ
ϵ 1
N ; ρ ¼ 1

N and for clonality level x1c= 1−ϵ. These imply
that cheater invasion succeeds when clonality level (1−ϵ) is
small and the non-clonal inoculum size (N) is large (i.e.,
general relatedness is low) (Fig. 2d). In contrast, invasion of
one facultative cooperator into a population of another
succeeds when N is large (i.e., non-clonal relatedness is
low), irrespective of ϵ (Fig. 2e). At high clonality (1−ϵ) and
high non-clonal inoculum size (N), allele diversity of
facultative cooperation is therefore maintained con-
comitantly with being stable against cheating (Outlined area
in Fig. 2d, e). In the case of partial migration, fitness is
determined by both growth (fecundity) and competition
within a patch [39] and population structure becomes more
complex as well. This, however, does not qualitatively
affect our results (see SI text, and Fig. S1). The separation
into two types of patches is conceptually simple, but not
necessary. The same qualitative effects are found when we
consider the case where a fraction (1−ϵ) is clonal while the
rest of the microbes inoculate patches with a varying (long-
tailed) distribution of patch sizes (SI text, Fig. S2).

Colony expansion model

Microorganisms also achieve high clonality via colony or
biofilm growth. It was previously shown that under such
growth conditions, the combination of genetic drift and
competition for space and nutrients leads to the formation of
clonal “sectors”, even if competing genotypes are neutral
[28, 40]. Selection will affect both the probability of sector
emergence and the growth of emerging sectors [41].
Selection for cooperative behaviors under such conditions
has been demonstrated both theoretically [30] and experi-
mentally [27], but little attention has been given to the fate
of kin-discriminative strategies under these modes of
growth.

We used lattice-based, two-dimensional simulations to
analyze the emerging selection patterns during colony
growth [42]. We simulated colony growth on a two-
dimensional lattice, where each lattice point is a microbe
(Fig. 2f) [43]. Microbes were initially arranged in a disc of a
~20-cell radius. We assumed that only microbes on the
colony border are socially active and able to grow. At the
start of a simulation, Ni random nearby microbes on the
border were chosen to be of the rare genotype, while the rest
were of the resident genotype. At each time step, each
active microbe was assigned a fecundity value based on its
genotype, the applied social rules (Fig. 2a, b) and the fre-
quency G of invaders within the active population in a
squared (n × n) social neighborhood centered around it
(Fig. 2f). A single microbe was then randomly chosen at a
probability proportional to its fecundity and a progeny of
the same genotype was placed in an adjacent open lattice

Clonality and non-linearity drive facultative-cooperation allele diversity



Fig. 2 Comparing exploitive and kin-discriminative interactions in two
population structures with high clonality. a, b The fecundity of two
interacting strains in a well-mixed interaction group with a fraction G
of invaders. Shown are the equations and graphs for the fecundity
functions for the interaction between a facultative cooperator strain and
a cheater strain (a) and between two facultative-cooperation strains
(b). The basal fecundity parameter f0 is chosen such that f2(G= 0)= 0.
Dashed lines emphasize clonal fitness values. c–e Infinite island model
with both clonal and non-clonal bottlenecks, with full migration. c The
simulation scheme, as described in the text (pie chart representation as
in Fig. 1b). d, e Relative change in the invader’s frequency (p1) for
varying values of the large bottleneck size (N) and the clonality level
(1−∈), for the two interactions in panels a, b, respectively. The out-
lined area denotes conditions that permit mutual invasion of facultative
cooperators but prevent cheater invasion. The parameters for these two
plots are B= 0.1 and C= 0.06. f–j Social selection in colony growth
simulations. f A scheme of a colony growth simulation. Growth
probability of a focal active microbe on the edge of the colony depends

on the relative frequency G of active microbes in a defined neigh-
borhood around the focal microbe. In the example, neighborhoods size
is: n= 5, and initial invader cluster size is: Ni= 4. g The relative
change in invader frequency for a cheater (red), or facultative coop-
erator (green), invading a resident facultative cooperator. The initial
number of invaders is Ni= 1. h Population structure measures (general
relatedness r (solid line), non-clonal relatedness ρ (dotted line) and
clonality level x1c (dashed line)) for the mutual facultative cooperators
data plotted in panel g (see SI text). i, j The relative change in invader
frequency, for varying levels of the initial number of invaders (Ni), and
the number of time steps (T), for the two interactions in panels (a, b),
respectively. The outlined area denotes conditions that permit mutual
invasion of facultative cooperators but prevent cheater invasion. To
maintain constant initial frequency in the meta-population of all
repeats, a simulation with a given Ni had

84;000
Ni

runs that started with Ni

invading microbes on the colony border, while the rest of the runs
started with zero invading microbes. The simulations in panels g–j was
done using Matlab 2017a, with parameters: n= 11, B= 0.2, C= 0.12

I. Ben-Zion et al.



position. The simulation then continued to the next time
step.

Under the above assumptions, the fate of a given geno-
type is determined by its social nature, social neighborhood,
local competition and random drift in a complex manner. In
any simulation instance, a sector of the rare genotype may
form (Fig. 2f). Both the probability of sector formation and
its growth will depend on the different parameters, in a
stochastic manner. We therefore ran ~80,000 repeats of the
simulation and followed the frequency of the invader in the
meta-population composed of all simulation repeats, for an
order of 105 time steps per run.

We first considered the case of a single initiating microbe
of the rare genotype (Ni= 1). We found that the average
frequency of a rare cheater initially increased, but this trend
was subsequently reversed (Fig. 2g). Facultative-cooperator
invasion into a population of cheaters exhibited the opposite
trend, with an initial decrease, followed by a subsequent
increase in frequency (Fig. S3). Finally, the frequency of the
facultative cooperator, invading another facultative coop-
erator, initially increased similarly to the cheater genotype,
but then remained nearly constant with a very slow decline
(Fig. 2g). By the end of the simulation run, these trends
resulted in the invasion of facultative cooperators into the
cheater and into another facultative cooperator, while the
rare cheater failed to invade (Fig. 2g, Fig. S3).

The above results can be qualitatively understood by
considering selection on the clonal and non-clonal sub-
populations in each type of social interaction. To better
understand this, we calculated the three population-structure
measures, r, ρ and, x1c for the meta-population of all
simulation repeats (Fig. 2h). Each of these variables was
calculated based on the social neighborhood defined above
(Fig. 2f). We found that these variables behave similarly for
all types of interactions (Fig. S3), so for simplicity, we
present here those of the facultative cooperator invading
another facultative cooperator (Fig. 2h). Initially, both
measures of relatedness were low (r ¼ ρ � Ni

n ) and the
invader resided in non-clonal groups only. At later simu-
lation steps, clonal sectors appeared and clonality level
increased. This was concurrent with a marked increase in
general and non-clonal relatedness. The change in popula-
tion structure measures over the course of the simulation
correlated well with the initial selection and later counter-
selection of invading cheaters and the opposite behavior of
invading facultative cooperators. For the interaction
between the two facultative-cooperation variants, initial
invasion was well correlated with the initial low non-clonal
relatedness. At later times, the facultative-cooperator’s
extremely weak counter-selection corresponded well with
the increase in non-clonal relatedness and the reduced
fraction of non-clonal groups, which solely dictated
selection.

The dynamics of colony growth invasion can be par-
titioned into early (non-clonal) and late (predominantly
clonal) phases, whose integration determines evolutionary
fate. The facultative-cooperator’s invasion into another
facultative cooperator is expected to depend mostly on the
dynamics in the early, non-clonal phase, while the cheater
invasion is expected to depend on both phases. We
therefore inspected the significance of these phases by
varying both the initial relatedness (by changing Ni), and
the duration of the late phase (by varying the overall
number of time steps, T). Indeed, invasion of the facul-
tative cooperator into another facultative cooperator was
only weakly dependent on the duration of the late phase,
but strongly depended on initial relatedness (invasion
succeeds for Ni, ≤ 3), while cheater invasion depended on
both parameters (Fig. 2i, j). Initial relatedness and the
duration of the predominantly clonal phase therefore play
a similar role to the inverse bottleneck size, 1

N, and clon-
ality level, 1−ϵ, in the infinite island model, and facul-
tative cooperators coexist and resist cheating in a range of
parameters (Outlined area in Fig. 2i, j). In addition, we
found that the invasion pattern did not qualitatively
depend on social neighborhood size (n), or the initial
colony size, but did depend in an expected manner on the
cost to benefit ratio (Fig. S3).

Population structure and the evolution of quorum-
sensing systems

Our theoretical analysis provides a means to predict the
effect of population structure on kin-discriminative inter-
actions. We recently showed experimentally that the
ComQXP quorum-sensing (QS) system of the Gram-
positive bacterium, Bacillus subtilis, controls cooperative
behaviors and that a QS response mutant behaves as a social
cheater in a swarming motility assay by exploiting the wild-
type’s production of a public-good surfactant (Fig. 3a, c).
We further showed the occurrence of mutual facultative
cooperation between divergent QS alleles (also known as
pherotypes) (Fig. 3b, d) [16, 44]. Each pherotype senses
only its own signal. A majority pherotype therefore senses
stronger signal and correspondingly makes more surfactant
than the minority strain, leading to a fitness advantage of the
minority pherotype. In the best-studied case (comparison of
pherotypes NAF4 and RO-H-1) sensing levels were not
equal, which led to a non-symmetric coexistence point (with
a ratio of ~4:1), but equal clonal fitness (Fig. 3d). Notably,
some Bacillus pherotypes show a low level of cross-inter-
action, while others show negative cross-talk [45, 46], but
this does not qualitatively changes the existence of mutual
facultative cooperation [21, 46].

We used the data collected in the above experiments to
analyze the selection on realistic kin-discriminative and
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exploitive behaviors in different population structures. To
this aim, we considered the extreme bottleneck scenario,
treating each swarm as the output of a single growth patch
(Bacillus subtilis swarms have been shown to be well-
mixed and unstructured [16]). We transformed the data
presented in our previous work [16], which showed total
cell yield and relative frequency changes of the two
genotypes, to the fitness of each genotype as a function of
genotype frequencies (Fig. 3c, d, Methods). We then used
fitted functional forms of the fitness to calculate the
ability of each of the genotypes to invade when rare, in a
simple structured population, similar to the infinite island
model described above, where r and ρ can be varied
independently and continuously (Fig. 3e, f, Methods). In
such a model, selection of a rare variant is established by
comparing its fitness over the distribution of subgroups it

resides in, to the clonal fitness of the resident variant.
Note that the strong non-linearity of the fitness functions
may lead to different relatedness thresholds for invasion
when the rare and the resident genotypes are switched,
allowing for mutual invasion or mutual exclusion of two
genotypes.

We found that selection in these realistic social interac-
tions followed a similar scheme to that obtained with sim-
plistic assumptions on the nature of social interactions.
First, we examined the interaction between the ΔcomA QS
cheater mutant [16] and the wild-type QS cooperator
(Fig. 3a, c, e). At low levels of general and non-clonal
relatedness, the cheater and cooperator co-existed by mutual
invasion. As general or non-clonal relatedness increased,
the cheater lost its ability to invade. Cheater dominance
occurred near zero relatedness only. Clearly, cheating

Fig. 3 Analysis of experimental data of two social interactions
between quorum-sensing variants in B. subtilis. a, c, e Interaction
between the wild-type cooperator strain (in blue), which produces and
secretes Surfactin (a public-good surfactant that enables swarming
motility) and a non-producing cheater mutant (in red). Surfactin is
produced in response to the ComQXP QS system. ComX is a signaling
peptide that binds and activates the receptor ComP, which then acti-
vates downstream response via ComA. When co-cultured in a
swarming assay, a strain deleted of the response regulator gene comA
(in red), exploits the production of Surfactin by the wild-type
strain and swarms well, leading to a fitness advantage of the mutant
over the wild-type in any mixed culture. b, d, f Interaction between
isogenic B. subtilis strains encoding for pherotypes (receptor-signal

allele pairs) RO-H-1 (in green) and NAF-4 (in blue) of the ComQXP
QS system. A strain of each pherotype responds specifically to its own
signaling peptide and produces Surfactin proportionally to its fre-
quency in co-culture, leading to mutual facultative cooperation. a–b
Social interaction schemes. c–d Frequency-dependent fitness values
(plus signs, data taken from ref. [16]) with least squares fits (solid
lines, see Methods) and dashed lines that emphasize clonal fitness
values. e–f Calculated invasion plots in a simple structured population,
where general and non-clonal relatedness vary continuously and
independently (although ρ is always smaller than r) (Methods).
Colored areas report the success of invasion of each of the variants,
when rare
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dynamics depends strongly on both measures of population
structure (Fig. 3e).

Next, we examined the interaction between the two QS
pherotypes named RO-H-1 and NAF-4 (Fig. 3b, d, f) [16].
The minimal fitness of both strains in well-mixed swarming
plates occurred at an intermediate frequency (Fig. 3d),
suggesting that selection will depend on population struc-
ture (Box Fig. B). This is reflected in the invasion plot of
the two strains (Fig. 3f). Except for at very high general
relatedness (r < 0.95), invasion depended predominantly on
non-clonal relatedness. Each of the strains invaded below a
certain threshold of non-clonal relatedness (ρ < 0.3 for the
RO-H-1, and ρ < 0.8 for NAF-4) corresponding to their
asymmetric coexistence point in well-mixed swarming
plates. At the high r region, invasion was dependent on both
general and non-clonal relatedness, although experimental
accuracy was insufficient to determine it (Fig. S4). This
dependence on the general relatedness in the high r region is
the result of the small, non-significant, difference in clonal
fitness of the two variants, which leads to dominance of the
clonal component in Eq. 1. These results suggest that, for
realistic interactions as well, facultative-cooperation allele
diversity could be both maintained and stabilized against
cheating under high clonality and low non-clonal
relatedness.

Discussion

In this work, we analyzed the impact of population structure
on diversity of kin-discrimination alleles and demonstrated
that clonality impacts the balance between kin-
discriminative interactions and other social interactions.
Specifically, we showed that high clonality, combined with
mixing in the non-clonal part of the population, maintains
facultative-cooperation allelic diversity and stabilizes it
against the invasion of cheaters. The intuition for this effect
is simple (Fig. 1) – clonal groups promote cooperation, but
do not have any effect on interactions between facultative-
cooperation variants.

Using the Price equation, we devised a modified version
of Hamilton’s rule that demonstrates that the fate of an
invading kin-discrimination genotype is not dependent on
the clonal component of the general relatedness coefficient
but it may depend on a novel measure we defined. This
coefficient, termed non-clonal relatedness, measures iden-
tity of interacting organisms in genetically heterogeneous
social groups, whereas general relatedness measures iden-
tity over all social groups, including clonal ones (Box). We
stress that the theoretical analysis we performed does not
diverge from the framework of the Price equation and
Hamilton’s rule [33].

Our analysis points to the importance of non-linear fre-
quency dependence when considering kin-discriminative
interactions. In fact, we showed that linear fitness functions
would necessary lead to a population-structure-independent
invasion pattern. From a mechanistic perspective, strong
non-linear frequency dependence characterizes many
microbial social interactions, which typically depend on
public goods [13, 47, 48]. Specifically, facultative coop-
eration is intrinsically non-linear, as the level of cooperation
depends on the frequency of cooperating cells in a popu-
lation. By re-analyzing experimental data we have recently
published, we showed how the realistic interaction between
QS pherotypes [16] displays approximately equal clonal
fitness and non-linear frequency dependence, with a mini-
mum fitness at an intermediate frequency. This allows for
the diversifying selection of QS-mediated facultative
cooperation under certain structured populations (Fig. 3).
The robustness of the results to differences in the clonal
fitness of the two QS pherotypes suggests the generalization
of our predictions to cases where kin-discrimination var-
iants also differ in clonal fitness but this difference is much
smaller than fitness effects in mixed cultures.

While Hamilton’s rule is always true, it is not always
resourceful in understanding the dependence of selection on
the parameters of specific models [33, 49]. We therefore
studied the relevance of our insights on facultative coop-
eration in two specific microbial growth models. In these
models, kin-discriminative interactions were only assumed
for the growth (fecundity) component of the life cycle,
while reproductive success of a given organism was also
dictated by other aspects of the cycle, such as migration,
local competition and chance. In both growth models, we
were able to show how the different parameters relate to
the theory and how one parameter (ϵ in the islands model,
and the number of simulation steps T in the colony growth
model) strongly affects the stability of cooperation against
cheaters due to its impact on clonality, while not sig-
nificantly affecting interactions between two facultative
cooperators (Fig. 2). This led to the maintenance of
facultative-cooperation allele diversity together with stabi-
lity against cheaters in a wide range of parameters. Espe-
cially important is the colony growth model, since in
this model clonality is not externally invoked (as in the
infinite island model), but is an emergent property of
the growth process, as has been shown by many theoretical
and experimental works [27, 28, 30, 40, 41]. The direct
relevance of this model to experimental systems, also
allows one to envision relevant experiments, where biofilms
could be grown under varying external conditions (which
affect sector formation [41]), or initial population size
(which affects initial mixing [50]), to test the effect of
clonality and mixing on kin-discriminative compared to
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other social interactions, and specifically on the main-
tenance of facultative-cooperation allele diversity. From
a modeling perspective, there are multiple ways of simu-
lating social interactions on grids, by differently
connecting a fitness parameter to growth laws or
implicating the effect of the social neighborhood [32, 51].
While we chose a specific set of rules for our simulation,
we expect that modification of these rules will not con-
siderably change the result, but such comparison will be
done elsewhere.

What is the impact of clonality on the evolution of other
kin-discriminative interactions? The answer to this question
depends on the specific mechanism of kin discrimination
and on the range of possible additional social interactions
that would impact the system upon recombination or
mutation. In the SI text, we consider another example of a
kin-discriminative interaction (in our broad definition),
between a facultative-harming “greenbeard” and a non-
beard organism [52]. We show that both high clonality and
high non-clonal relatedness are needed to maintain the
dominance of the greenbeard over a nonbeard, if the non-
beard can acquire a costly resistance to the harming effect
(SI text and Fig. S5).

Much of the literature on diversity of kin-recognition
alleles is focused on kin-directed help and non-kin directed
harm which lead to positive frequency-dependent selection
between divergent alleles. A possible explanation for the
maintenance of diversity in such systems depends on oscil-
lations in dominance between different kin-discrimination
cooperating genotypes and their respective cheaters [1, 2, 34,
52–60]. Our analysis points to an additional possible
mechanism, where positive frequency dependence is reversed
into negative frequency dependence between strains if non-
clonal relatedness is high enough. This would only be pos-
sible if frequency dependence is non-linear and the maximum
of the invader’s fitness is obtained at an intermediate fre-
quency (Box Fig.). Although such non-monotonic frequency
dependence is harder to imagine considering growth
(fecundity) only, local competition might generate it at the
fitness level. We demonstrate this theoretical prediction in a
colony growth simulation (Fig. S6).

Kin-discrimination also evolves by combinatorial
accumulation of multiple different kin-discrimination
loci in the same genome. In B. subtilis this was shown
to occur both for toxin-antidote (non-kin harm) loci
[61, 62] and for quorum-sensing systems of the Rap-Phr
type [17, 63]. Understanding the accumulation of a kin-
discrimination locus requires studying its interaction
with an organism lacking it. If the novel locus has low
cost in clonal groups, this will lead to a kin-discriminative
interaction. We show in the SI text and Fig. S7 that in this
case, the invasion of the strain with the additional locus

will always be favored, both for non-kin harm and for
facultative cooperation.

Discriminating mechanisms can also work at the species
level. For example, recent works showed how diversity of
QS signals between vibrio species may lead to facultative-
cooperation between species [17, 64]. We note that the
mechanisms we proposed could also stabilize ecological
coexistence of related species which tend to overlap in
their niches and can exploit each other’s production of
public goods.

Altogether, our work points to the importance of
microbial clonal structure and non-linear interactions in the
evolution of various kin-discriminative interactions. While
characterization of social interactions by simple measures
like benefit, cost and relatedness often masks much of the
complexity of social interactions, it also allows for broad
generalizations and the ability to (carefully) draw analogies
between distinct social systems [33]. Here, we showed how
such simplification enables drawing some general conclu-
sions regarding the complex social phenomena of microbial
facultative cooperation.

Methods

Experimental data analysis

For each of the two interactions (Fig. 3a, b), we used total
co-culture yield, as well as initial and final fractions of the
two strains in co-culture, presented in [16]) (in the pher-
otypes dataset (Fig. 3d), two technical repeats were aver-
aged to present one biological repeat). To reduce the impact
of day-to-day variation in yield, we normalized the total co-
culture yield in each of the five biological repeats of each
dataset by the mean yield in that repeat. The fitness W of
each strain was obtained by multiplying the normalized
yield by the ratio of final to initial fractions of that strain
(Fig. 3c, d).

Fitness of each strain as a function of its fraction, was
fitted with a weighted fit, using the fit command in
MATLAB Curve Fitting Toolbox R2015b (MathWorks,
Inc., Natick, Massachusetts) (Fig. 3c, d). A linear fit in log
scale was used in Fig. 3c, and a parabolic fit in linear scale
was used in Fig. 3d, where fitness was non-monotonic.
Datasets were binned according to initial fractions, with
bins of ~1, ~10, ~50, ~90, ~99, and 100%. The fitting
weight in each bin was calculated as the inverse of the
variance in that bin.

For population structure, we extended the dual-
bottleneck infinite island model, presented above, to allow
continuous variation in general and non-clonal relatedness
coefficients. This population structure can be presented by
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the following three-parameter distributions of social
neighborhoods:

P Gð Þ ¼ δ Gð Þ 1� p1
1�rþρ

ρ

� �
þ δ G� ρð Þp1 1�r

ρ 1�ρð Þ
þ δ G� 1ð Þp1 r�ρ

1�ρ

ð4Þ

where p1,r,ρ are parameters that satisfy 0 < ρ ≤ r < 1 and
p1→0 (for invasion from rarity). Therefore, individuals
populate clonal groups of genotype #2 at a probability
P G ¼ 0ð Þ ¼ 1� p1

1�rþρ
ρ , mixed groups with a fraction

ρ of genotype #1 individuals at a probability
P G ¼ ρð Þ ¼ p1 1�r

ρ 1�ρð Þ, and clonal groups of genotype #1 at
a probability P G ¼ 1ð Þ ¼ p1

r�ρ
1�ρ. This distribution yields:

〈g〉= p1, r= r, and ρ= ρ for the invader frequency, general
and non-clonal relatedness coefficients, respectively.

Using Eq. S8 (SI text), we calculated the conditions for-
invasion in this population structure (presented in Fig. 3e, f):

1� r

1� p
W1 ρð Þ þ r � ρ

1� ρ
W1 1ð Þ �W2 0ð Þ > 0: ð5Þ

where we used the fitting functions in order to estimate the
above values of the fitness function.

Acknowledgements We thank Stuart A. West for comments on the
manuscript. We thank Adi Stern for the use of the lab’s computer
cluster for simulations, and Maoz Gelbart for helping. Work at the
Eldar lab is financed by the European Research Council grant
#724805.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Strassmann JE, Gilbert OM, Queller DC. Kin discrimination and
cooperation in microbes. Annu Rev Microbiol. 2011;65:349–67.

2. Biernaskie J, Gardner A, West S. Multicoloured greenbeards,
bacteriocin diversity and the rock-paper-scissors game. J Evol
Biol. 2013;26:2081–94.

3. Riley MA, Gordon DM. The ecological role of bacteriocins in
bacterial competition. Trends Microbiol. 1999;7:129–33.

4. Russell AB, Peterson SB, Mougous JD. Type VI secretion system
effectors: poisons with a purpose. Nat Rev Microbiol. 2014;12:
137–48.

5. Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent
growth inhibition. Trends Microbiol. 2013;21:230–7.

6. Lee W, Van Baalen M, Jansen VA. An evolutionary mechanism
for diversity in siderophore-producing bacteria. Ecol Lett. 2012;
15:119–25.

7. Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV. Evidence
for Diversifying Selection at the Pyoverdine Locus of Pseudo-
monas aeruginosa. J Bacteriol. 2005;187:2138–47.

8. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S,
Yan C, et al. FLO1 is a variable green beard gene that drives
biofilm-like cooperation in budding yeast. Cell . 2008;135:726–
37.

9. Pathak DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL, Wall D.
Cell contact–dependent outer membrane exchange in Myx-
obacteria: genetic determinants and mechanism. PLoS Genet.
2012;8:e1002626.

10. Garcia EC, Perault AI, Marlatt SA, Cotter PA. Interbacterial
signaling via Burkholderia contact-dependent growth inhibition
system proteins. Proc Natl Acad Sci. 2016;113(29):
8296–301.

11. Benabentos R, Hirose S, Sucgang R, Curk T, Katoh M, Ostrowski
EA, et al. Polymorphic members of the lag gene family mediate
kin discrimination in Dictyostelium. Curr Biol. 2009;19:567–72.

12. Santorelli LA, Thompson CRL, Villegas E, Svetz J, Dinh C,
Parikh A, et al. Facultative cheater mutants reveal the genetic
complexity of cooperation in social amoebae. Nature. 2008;451:
1107–10.

13. Smith J, Van Dyken JD, Velicer GJ. Nonadaptive processes can
create the appearance of facultative cheating in microbes. Evolu-
tion. 2014;68:816–26.

14. Velicer GJ, Vos M. Sociobiology of the Myxobacteria. Annu Rev
Microbiol. 2009;63:599–623.

15. Travisano M, Velicer GJ. Strategies of microbial cheater control.
Trends Microbiol. 2004;12:72–8.

16. Pollak S, Bendori SO, Even-Tov E, Lipsman V, Bareia T, Ben-
Zion I, et al. Facultative cheating supports the co-existence of
multiple quorum-sensing pherotypes. Proc Natl Acad Sci.
2016;113(8):2152–7.

17. Even-Tov E, Bendori SO, Valastyan J, Ke X, Pollak S, Bareia T,
et al. Social evolution selects for redundancy in bacterial quorum
sensing. PLoS Biol. 2016;14:e1002386.

18. Madgwick PG, Stewart B, Belcher LJ, Thompson CR, Wolf JB.
Strategic investment explains patterns of cooperation and cheating
in a microbe. Proc Natl Acad Sci. 2018;115:201716087.

19. Allen RC, McNally L, Popat R, Brown SP. Quorum sensing
protects bacterial co-operation from exploitation by cheats. ISME
J. 2016;10:1706.

20. Özkaya Ö, Balbontín R, Gordo I, Xavier KB. Cheating on chea-
ters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol.
2018;28:2070–80. e6

21. Eldar A. Social conflict drives the evolutionary divergence of
quorum sensing. Proc Natl Acad Sci. 2011;108(33):13635–40.

22. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The
Social Lives of Microbes. Annu Rev Ecol, Evol, Syst. 2007;
38:53–77.

23. Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-
Charles RR, et al. The origin of the Haitian cholera outbreak
strain. New Engl J Med. 2011;364:33–42.

24. Zhou L, Slamti L, Nielsen-LeRoux C, Lereclus D, Raymond B.
The Social Biology of Quorum Sensing in a Naturalistic Host
Pathogen System. Curr Biol. 2014;24:2417–22.

25. Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms.
FEMS Microbiol Rev. 2009;33:206–24.

Clonality and non-linearity drive facultative-cooperation allele diversity

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


26. Xavier JB, Martinez-Garcia E, Foster KR. Social Evolution of
Spatial Patterns in Bacterial Biofilms: When Conflict Drives
Disorder. Am Nat. 2009;174:1–12.

27. Van Dyken JD, Müller MJ, Mack KM, Desai MM. Spatial
population expansion promotes the evolution of cooperation in an
experimental prisoner’s dilemma. Curr Biol. 2013;23:919–23.

28. Hallatschek O, Hersen P, Ramanathan S, Nelson D. Genetic drift
at expanding frontiers promotes gene segregation. Proc Natl Acad
Sci. 2007;104(50):19926.

29. Hamilton WD. The genetical evolution of social behaviour. I. J
Theor Biol. 1964;7:1–16.

30. Xavier JB, Foster KR. Cooperation and conflict in microbial
biofilms. Proc Natl Acad Sci. 2007;104(3):876–81.

31. Perc M, Gómez-Gardeñes J, Szolnoki A, Floría LM, Moreno Y.
Evolutionary dynamics of group interactions on structured popu-
lations: a review. J R Soc Interface. 2013;10:20120997.

32. Szabó G, Fath G. Evolutionary games on graphs. Phys Rep.
2007;446:97–216.

33. Gardner A, West SA, Wild G. The genetical theory of kin
selection. J Evol Biol. 2011;24:1020–43.

34. Rousset F, Roze D. Constraints on the origin and maintenance of
genetic kin recognition. Evolution. 2007;61:2320–30.

35. Price GR. Extension of covariance selection mathematics. Ann
Hum Genet. 1972;35:485–90.

36. Ohtsuki H. Evolutionary games in Wright’s island model: kin
selection meets evolutionary game theory. Evolution. 2010;64:
3344–53.

37. Roze D, Rousset F. Inbreeding depression and the evolution of
dispersal rates: a multilocus model. Am Nat. 2005;166:708–21.

38. Lehmann L, Rousset F, Roze D, Keller L. Strong reciprocity or
strong ferocity? A population genetic view of the evolution of
altruistic punishment. Am Nat. 2007;170:21–36.

39. Roze D, Rousset F. Multilocus models in the infinite island model
of population structure. Theor Popul Biol. 2008;73:529–42.

40. Korolev KS, Xavier JB, Nelson DR, Foster KR. A quantitative
test of population genetics using spatiogenetic patterns in bacterial
colonies. Am Nat. 2011;178:538–52.

41. Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure
in cell groups and the evolution of cooperation. PLoS Comput
Biol. 2010;6:e1000716.

42. Gralka M, Stiewe F, Farrell F, Moebius W, Waclaw B,
Hallatschek O. Allele surfing promotes microbial adaptation
from standing variation. Ecol Lett. 2016;19:889–98.

43. Eden M. A two-dimensional growth process. Dynamics of fractal
surfaces. 1961;4:223–39.

44. Pérez-Escudero A, Gore J. Selection favors incompatible signaling
in bacteria. Proc Natl Acad Sci. 2016;113:1968–70.

45. Ansaldi M, Dubnau D. Diversifying selection at the Bacillus
Quorum-sensing locus and determinants of modification specifi-
city during synthesis of the ComX pheromone. J Bacteriol.
2004;186:15–21.

46. Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D.
Specific activation of the Bacillus quorum-sensing systems by
isoprenylated pheromone variants. Mol Microbiol. 2002;44:1561–
73.

47. Smith J, Van Dyken JD, Zee PC. A generalization of Hamilton’s
rule for the evolution of microbial cooperation. Science.
2010;328:1700–3.

48. Gore J, Youk H, van Oudenaarden A. Snowdrift game dynamics
and facultative cheating in yeast. Nature. 2009;459:253–6.

49. Fletcher JA, Doebeli M. A simple and general explanation for the
evolution of altruism. Proc R Soc London B. 2009;276(1654):13–9.

50. van Gestel J, Weissing FJ, Kuipers OP, Kovács AT. Density of
founder cells affects spatial pattern formation and cooperation in
Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.

51. Szolnoki A, Antonioni A, Tomassini M, Perc M. Binary birth-
death dynamics and the expansion of cooperation by means of
self-organized growth. EPL (Europhys Lett). 2014;105:48001.

52. Gardner A, West SA. Greenbeards. Evolution. 2010;64:25–38.
53. Jansen V, van Baalen M. Altruism through beard chromody-

namics. Nature. 2006;440:663–6.
54. Grafen A. Do animals really recognize kin? Anim Behav. 1990;

39:42–54.
55. Axelrod R, Hammond RA, Grafen A. Altruism Via Kin-Selection

Strategies That Rely On Arbitrary Tags With Which They Coe-
volve. Evolution. 2004;58:1833–8.

56. Pagie L, Hogeweg P. Colicin diversity: a result of eco-
evolutionary dynamics. J Theor Biol. 1999;196:251–61.

57. Majeed H, Gillor O, Kerr B, Riley MA. Competitive interactions
in Escherichia coli populations: the role of bacteriocins. ISME J.
2011;5:71–81.

58. Dykes GA, Hastings JW. Selection and fitness in bacteriocin–
producing bacteria. Proc R Soc London B. 1997;264(1382):683–
7.

59. Bucci V, Nadell CD, Xavier JB. The Evolution of Bacteriocin
Production in Bacterial Biofilms. Am Nat. 2011;178:E162–E73.

60. Czárán TL, Hoekstra RF, Pagie L. Chemical warfare between
microbes promotes biodiversity. Proc Natl Acad Sci. 2002;99
(2):786–90.

61. Lyons NA, Kraigher B, Stefanic P, Mandic-Mulec I, Kolter R. A
combinatorial kin discrimination system in Bacillus subtilis. Curr
Biol. 2016;26:733–42.

62. Stefanic P, Kraigher B, Lyons NA, Kolter R, Mandic-Mulec I. Kin
discrimination between sympatric Bacillus subtilis isolates. Proc
Natl Acad Sci. 2015;112:14042–14047.

63. Even-Tov E, Omer Bendori S, Pollak S, Eldar A. Transient
duplication-dependent divergence and horizontal transfer underlie
the evolutionary dynamics of bacterial cell–cell signaling. PLoS
Biol. 2016;14:e2000330.

64. Ke X, Miller LC, Bassler BL. Determinants governing ligand
specificity of the Vibrio harveyi LuxN quorum-sensing receptor.
Mol Microbiol. 2015;95:127–42.

I. Ben-Zion et al.


	Clonality and non-linearity drive facultative-cooperation allele diversity
	Abstract
	Introduction
	Results
	A Hamilton-like invasion rule for kin-discriminative interactions suggests conditions for the maintenance of facultative-cooperation allele diversity
	Facultative-cooperation divergent alleles coexist and resist cheating in realistic microbial structured populations
	Infinite island model with both clonal and non-clonal bottlenecks
	Colony expansion model
	Population structure and the evolution of quorum-sensing systems

	Discussion
	Methods
	Experimental data analysis
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




